Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields

نویسندگان

  • Swastik Kopparty
  • Mrinal Kumar
  • Michael E. Saks
چکیده

We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, . . . , |S|} and the set S of all irreducible, monic, univariate polynomials of degree n over a finite field Fq. This has applications in pseudorandomness, and answers an open question of Alon, Goldreich, H̊astad and Peralta [AGHP92]. Our approach uses a connection between irreducible polynomials and necklaces ( equivalence classes of strings under cyclic rotation). Along the way, we give the first efficient algorithm for indexing necklaces of a given length over a given alphabet, which may be of independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Construction of Irreducible Polynomials over Finite Fields

In this paper we investigate some results on the construction of irreducible polynomials over finite fields. Basic results on finite fields are introduced and proved. Several theorems proving irreducibility of certain polynomials over finite fields are presented and proved. Two theorems on the construction of special sequences of irreducible polynomials over finite fields are investigated in de...

متن کامل

Fast Algorithms to Generate Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2)

Many applications call for exhaustive lists of strings subject to various constraints, such as inequivalence under group actions. A k-ary necklace is an Ž . equivalence class of k-ary strings under rotation the cyclic group . A k-ary unlabeled necklace is an equivalence class of k-ary strings under rotation and permutation of alphabet symbols. We present new, fast, simple, recursive algoŽ . rit...

متن کامل

Parity of the number of irreducible factors for composite polynomials

Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The ...

متن کامل

Some Properties of Generalized Self-reciprocal Polynomials over Finite Fields

Numerous results on self-reciprocal polynomials over finite fields have been studied. In this paper we generalize some of these to aself reciprocal polynomials defined in [4]. We consider the properties for the divisibility of a-reciprocal polynomials, estimate the number of all nontrivial a-self reciprocal irreducible monic polynomials and characterize the parity of the number of irreducible f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014